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Introduction

What determines the ionic conductivity of an electrolyte
solution has remained a problem of great interest to
chemists for more than a century.*~® Such long-standing
interest stems not only from its relevance in many
chemical and biological applications, but also from the
many fascinating, often anomalous, behaviors that ionic
conductivity exhibits in a large number of solvents. Most
often discussed of these properties are the concentration
and the nonmonotonic ion size dependencies. However,
even after century-old debates and discussions, neither
of the above two problems has been satisfactorily resolved.
The mobility of an ion in a polar solvent is determined
by its complex interactions with the surrounding polar
molecules; these interactions are long-ranged and aniso-
tropic. In addition, the dynamics of polar liquids were
very poorly understood until recently.

There have been several significant developments in
the recent past in understanding the dynamics of dense
liquids that make the study of this fundamental problem
now even more interesting. Perhaps the most important
development is the discovery that the polar solvation
dynamics in most common solvents is strongly biphasic
with an initial ultrafast component which is in the
femtosecond regime and which often contributes 60—80%
to the total energy relaxation.*~® The discovery of this
ultrafast component raises several interesting questions.
For example, what can be the role of this component in
determining the mobility of the ions? Both the solvation
dynamics of an ion and the dielectric friction on it are
expected to be intimately related. The second notable
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development has been in the microscopic understanding
of the relation between diffusion and viscosity in dense
liquids.1®~1! In the study of ionic conductivity, one usually
assumes that diffusion of ions is related to the solvent
viscosity by the Stokes law, which is unsatisfactory for such
small ions as Lit and Na'". Recent theoretical devel-
opments!®~* can now provide microscopic description of
diffusion of small solutes in dense liquids.

The starting point of most discussions on ionic con-
ductivity is Kohlrausch’s law which is expressed as?

A=Ay — kv/C @

where A, represents the equivalent molar conductivity
and Ao its limiting value at infinite dilution. « is a
coefficient that is found to depend more on the nature of
the electrolyte (that is, whether it is uni-univalent or bi-
univalent, etc.) than on its specific identity. Ay is generally
obtained by extrapolating experimental A, at zero ionic
concentration and is one of the most easily accessible
transport quantities. The limiting ionic conductivity (Ao)
can be determined by applying Walden’s rule which states
that, for a particular ion, the product of Ay with solvent
viscosity (10) should be constant:?

Ay = constant (2

Even though approximate, expressions 1 and 2 are the two
most important statements on ionic conductivity of an
electrolyte solution. The first one has been explained in
terms of the Debye—Hiickel—Onsager theory*?~%2 which
also provides an expression for the prefactor «; it is found
to depend, among other things, on the limiting ionic
conductivity, Ag. Equation 1 has been confirmed for very
low concentration. Equation 2 can be rationalized in
terms of the well-known Stokes law? which predicts that
the friction on the ion is proportional directly to the
viscosity (o) and inversely to the crystallographic radius
of the ion (rion). The use of Einstein’s relation between
the friction and the diffusion coefficient (which is es-
sentially Ao) then produces eq 2. Experimental results,#~1°
however, indicate that the ionic mobilities in polar
solvents do not always decrease monotonically with
increasing radius. Instead, there is often a maximum as
Aono is plotted against rion 2, as shown in Figure 1 for both
protic and aprotic solvents. In fact, the breakdown of
Walden'’s rule (and of Stokes’s law) has been observed for
all the solvents studied and can be regarded as universal.

What makes the experimental results deviate so strongly
from Walden’s rule? Two completely different explana-
tions have been put forward to understand this problem.
The first and the oldest one is the solvent-berg model.? In
this picture it is postulated that the solvent molecules
immediately adjacent to the ion are rigidly bound to it.
The translational movement of the ion is, therefore, the
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FIGURE 1. Experimental™*~* values of the Walden product (Ag#o)
of rigid, monopositive ions in water (open triangles), acetonitrile (open
circles), and formamide (open squares) at 298 K plotted as a function
of the inverse of the crystallographic ionic radius, rign™2. The solid
line in each case is simply an aid to the eye. The crystallographic
radii of the ions are taken from Shannon, R. D.; Prewitt, C. T. Acta
Crystallogr. B 1969, 25, 925—946. Here, the tetraalkylammonium
ions are represented by C;—C, where C, = (CaHan+1)4aN™, 1 being
1,2 3 ord

movement of this kinetic unit termed as solvent-berg. The
effective size of the solvent-berg is larger than that of the
ion, and therefore, its mobility is much reduced from that
of the bare ion. However, it has proved very difficult to
quantify this model.

The second, more successful, model is based on a
continuum description of the solvent. Because of the long-
range nature of the ion—dipole interaction potential, it
was originally believed that this interaction can be re-
placed by the interaction of the ion with a continuum
solvent and the molecularity of interaction might not be
important. This model was originally introduced by Born
who modified the usual Stokes—Einstein hydrodynamic
model of diffusion by coupling the ionic field of the solute
with the bulk polarization mode of the solvent.® Accord-
ing to his picture, the ionic motion disturbs the equilib-
rium polarization of the solvent, and the relaxation of the
ensuing nonequilibrium polarization dissipates energy,
thereby enhancing the friction on the ion. He coined the
term dielectric friction to describe this extra dissipative
mechanism and expressed the total friction (Ciota) €XpE-
rienced by the ion moving through the viscous continuum
as follows:

Ctotal = gbare + CDF (3)

where {pr is the dielectric friction and Cpare is the friction
arising from the Stokes law due to the shear viscosity (7o)
of the solvent. This model was further developed by
Fuoss,* Boyd,'” and Zwanzig.'® The final expression (due
to Zwanzig) for dielectric friction leads to an overestima-
tion of friction for small ions. In an attempt to rectify this
lacuna, Hubbard and Onsager (H—O) studied the ionic
mobility problem in great detail*® within the framework
of the continuum picture. They proposed a theory which
can be regarded (in the language of Wolynes)? as the
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FIGURE 2. Comparison between the experimental results on A
and those from continuum theories. The experimental values of the
limiting ionic mobility (Ao) of rigid, monopositive ions in water at 293
K are plotted as a function of the inverse of the crystallographic
ionic radius, rien % The experimental results are denoted by the solid
circles. The solid line represents the predictions of Stokes’s law (with
the slip boundary condition), the large-dashed line the Hubbard—
Onsager theory, and the small-dashed line the theory of Zwanzig
(with the slip boundary condition). Note that the Stokes law is valid
for tetraalkylammonium ions.

“ultimate achievement in a purely continuum theory of
ionic mobility”.

In Figure 2, the predictions of the continuum theories
have been compared with the experimental results on
ionic mobility in water. It is clear from this figure that
although the simple expression of Zwanzig'® can explain
the observed nonmonotonic dependence of A on rign ™2,
it fails to reproduce the experimentally observed ionic
mobilities as it overestimates the dielectric friction. The
Hubbard—Onsager theory'® is satisfactory up to interme-
diate-sized ions, but fails to describe the sharp decrease
for small ions.

Clearly, the above continuum model based theories fail
to describe the ion transport in polar solvents. There are
many reasons for this failure, which have been extensively
discussed in the literature.~2* The most important is the
representation of the real solvent by a viscous dielectric
continuum. No molecularity of the solvent was consid-
ered. In addition, the description of solvent dynamics was
vastly inadequate.

Development of Microscopic Theories

To overcome the limitations of the continuum theories,
Wolynes?°~2! pioneered a microscopic approach which
was applied later by Colonomos and Wolynes?! in an
attempt to explain the experimentally observed anoma-
lous ionic mobility at zero ionic strength. Their theory
was based on Kirkwood’s formula for dielectric friction
on a solute molecule??

l 00
Cor = 3 7.Jo It Fia(QFa(® @
where Fig(t) is the force acting on the ion due to the ion—

dipole interaction only, kg is Boltzmann’s constant, T is
the temperature (K), and [l.Ostands for the ensemble
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averaging. The total friction is obtained by adding this
friction to the bare friction (see eq 3).

The results obtained were far superior to any previous
approach and suggested that molecularity of solute—
solvent interactions is certainly important and needs to
be properly included for successful descriptions of ionic
mobility of small solutes. The limitations of Wolynes’s
approach?°-2t were that the solvent was treated as an
overdamped Debye liquid characterized by a single re-
laxation time, tp, and that the self-motion of the ion was
neglected. Nevertheless, Wolynes’s work®—2! is a land-
mark and has served as the starting point of many
subsequent discussions in this field.

Recently, the above microscopic approach has been
generalized?*=?6 to include the ultrafast dynamics of
dipolar solvents,*~° a proper description of the intermo-
lecular orientational correlations present in a dense polar
liquid and the self-motion of the ion. The microscopic
theory is based on a simple physical picture. Consider a
tagged, singly charged ion in a dipolar liquid. For spheri-
cal solute ions, the interaction between the ion and the
dipolar liquid molecules can be separated into two
parts,2°=242 as envisaged in eq 3. The first, nonpolar part
(referred to as Cpare) can be calculated by using the recently
developed mode coupling theory (MCT).1°711 The latter
assumes that, in a dense liquid, the primary source of
fluctuation in the force acting on a molecule originates
from the latter’s coupling to the fluctuations of the
microscopic solvent density. There are several ways to
obtain the time correlation function of this nonpolar force,
all leading to the same final expression. However, it is
found that the theoretical'! values of Cpare are surprisingly
close to the ones given by Stokes’s law. The second part
originates from the long-range ion—dipole interaction and,
as already mentioned, is referred to as the dielectric
friction, ¢pr. The latter is dominated by the long-
wavelength solvent polarization fluctuations. Here, it is
particularly important to note that these long-wavelength
polarization fluctuations are the ones primarily re-
sponsible’™® for the ultrafast polar solvation dynamics
observed in experiments. As the size of the ion decreases,
Chare decreases, but ¢pr increases rapidly. The diffusion
coefficient of the ion is given by the Einstein relation
D" = KgT/Erotar, Where Ciorar is given by eq 3.

While only the zero frequency dielectric friction, {pr(w
— 0), is required to find the limiting ionic conductivity in
solution, the frequency (or time) dependent dielectric
friction, ¢pr(w) (or Cpe(t)), is often required in theoretical
studies of other problems. For example, in the study of
the intramolecular proton (H") transfer reaction®?2 and in
vibrational relaxation?® in dipolar liquids, the frequency,
dependence of dielectric friction plays a crucial role. The
microscopic expression for {pr(w) is given by?+27

2kg TPy poo .
Coe(w) = dte ' x
DF( ) 3(2ﬂ)2'/;

o dk K*Sjoa(kD1ci () Skoen(k.) (5)

where C!‘d(k) and SIs_olvent

(k,t) are the longitudinal compo-

nents of the ion—dipole direct correlation functions and
the orientational dynamic structure factor of the pure
solvent, respectively. The former describes the effective
coupling between the ion and the solvent molecules while
the latter contains the relevant solvent static and dynamic
orientational correlations, as probed by the ion’s electric
field. po is the average number density of the solvent. Sio,-
(k,t) denotes the self-dynamic structure factor of the ion.
The w = 0 limit of eq 5 provides the macroscopic friction
which is related to the limiting ionic conductivity, A,.

The above microscopic expression has a very simple
physical interpretation: It couples the motion of the ion
(described by Sion(k,t)) with that of the solvent (described
by St eni(K.1) via the effective, length dependent, cou-
pling constant, ciLd(k). The coupling is present on all
length scales; hence, the integration is over all wavenum-
bers (k).

The limiting ionic conductivity, Aq is calculated by
using the well-known Nernst—Einstein relation?

_ (ZF)2 KgT
o RT étotal (6)

where z is the valency on the ion, F the amount of
electricity carried by 1 gram-equivalent of the conducting
ion, and R the universal gas constant.

Relation of Dielectric Friction with Ultrafast Solvation
Dynamics. The solvation energy time correlation function
(STCF) is defined by**®

_ mXEsoIv(O) AEsolv(t)D
|:l]AEsoIv(O)|2[|

S(t) (7)

where AEg(t) is the time dependent fluctuation in the
solvation energy of the polar solute. The molecular theory
described above has been used to derive a microscopic
expression for the solvation energy time correlation func-
tion (STCF) which is given by”*

S(t) = A [ dk K*Sjoa(K,1) cig(K) I Skopent(ki)  (8)
where A is the normalization constant determined by the
equilibrium value of STCF, S(t=0). Comparison of egs 5
and 8 shows that the dynamics that determine both the
dielectric friction and the ion solvation dynamics are
essentially the same, with one significant difference: the
friction is more sensitive to the local structure and
dynamics than the solvation. Another important point to
note is that the dielectric friction (hence the ionic mobility)
is determined by the integration over all time. Therefore,
the presence of a slow component in the dynamics can
make a significant contribution to the friction, which was
the logic for the use of an overdamped description in the
earlier works.

The effects of ultrafast inertial solvation dynamics on
ionic mobility are shown in Figure 3, where the effects of
sequential addition of the fast modes are plotted for liquid
methanol. The mobility decreases drastically when all the
ultrafast modes are absent. It is interesting to note that,
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FIGURE 3. Effect of the sequential addition of the ultrafast
component of the solvent orientational motion on the /imiting ionic
mobility in methanol at 298 K. The values of the Walden product
(Aono) are plotted as a function of the inverse ionic radius. The
curves labeled 1, 2, and 3 are the predictions of the present molecular
theory including the first (slowest) one, the first two, and all three
Debye relaxations of the experimentally obtained dielectric relaxation
data by Kindt and Schmuttenmaer [Kindt, J. T.; Schmuttenmaer, C.
A. J. Phys. Chem. 1996, 100, 10373—10379]. The experimental
results of the Walden product for different ions are denoted by the
solid circles. The dashed line represents the predictions of the theory
of Zwanzig.!8

in the complete absence of the fast modes, the molecular
theory predicts ionic mobility comparable to the con-
tinuum model of Zwanzig.*® It is also interesting to note
that the viscosity plays no role in this dependence of Ay
on the ultrafast modes. The same behavior has been
found for ionic mobilities in water.

The physical origin of this large effect of ultrafast
solvation on limiting ionic conductivity is easy to under-
stand. The presence of a sizable ultrafast component
allows a rapid decay of the polarization disturbance
created by the ion’s motion. This dramatically reduces
the dissipation of the total energy involved. In the earlier
studies, the decay of this disturbance was assumed to
proceed only through the slowest channel!

Analysis of Experimental Results

The above theory has been applied to understand ionic
mobility in several common solvents. The calculations
of the wavenumber (k) dependent ion—dipole direct
correlation function, ciy(k), and the solvent orientational
dynamic structure factor, S.,..(k.t), have been de-
scribed elsewhere;”?*~2" here we mention only the bare
essentials. The pure solvent property, St eni(K.t), is ob-
tained by using an inversion procedure’ which uses
experimental results on dielectric and Kerr relaxations.
The static, orientational, solvent pair correlation functions
have been obtained from the calculations of Raineri et al .8
The ion—solvent coupling function ci4(k), on the other
hand, has been obtained from an analytic theory,? called
the mean-spherical approximation, which assumes that
both solute and solvent molecules are spheres, with a
point ion and a point dipole at their respective centers.
While this treatment provides an accurate description of
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FIGURE 4. Values of the limiting ionic conductivity (Ag) of rigid,
monopositive ions plotted as a function of the inverse ionic radius
ion * in water at 298 K. The solid line represents the predictions of
the present microscopic theory. The solid circles denote the
experimental results.

the long-range correlations, its description of the short-
range correlations is only approximate. This is partly
justified in the present case because we are studying
primarily the effects of long-range polar interactions.

lonic Mobility in Water: Solvent Isotope Effect. The
extended three-dimensional hydrogen bonding greatly
influences both the static and the dynamic properties of
liquid water. Recently, Fleming and coworkers*® have
shown that the dynamical solvent response of water to a
laser-induced external perturbation is ultrafast and 70—
80% of the total energy relaxation is completed within 55
fs. The rest is carried out by a much slower dynamics
with a time constant in the picosecond regime. These
observations have been corroborated by several
theoretical’™® and computer simulation studies.> Theo-
retical studies’®® reveal that the ultrafast solvation could
arise from the intermolecular vibration of the O—H:---O
hydrogen bond which manifests as a collective excitation
at 193 cm! in the far-infrared (far-IR) line shape studies.
It is probably no surprise that even the solvation dynamics
of water is determined by its hydrogen bond network!
However, early studies on ionic mobility have completely
neglected this ultrafast solvent response.

The results of theoretical studies for Ag in water at room
temperature for monovalent tetraalkylammonium and
alkali-metal ions are shown in Figure 4, where A, is plotted
as a function of the inverse of the crystallographic ionic
radius. The agreement with the experimental results!* is
particularly encouraging since the theory could success-
fully demonstrate the breakdown of the Stokes law. The
present theory also predicts quantitatively the experimen-
tal Ag of small ions like Na* and Li™.

The complete deuteration of liquid water brings out
subtle changes in both static and dynamic properties of
water. The isotopic substitution leads to stronger hydro-
gen bonding and hence more structural order in D,O
compared to that in H,O. This relatively more stable
network increases both the viscosity and the Debye
relaxation time (zp) by about 25% and reduces A, by about
the same.*~%6 However, this variation alone does not
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FIGURE 5. Solvent isotope effect on limiting ionic conductivity in
water at 298 K. The values of the ratio (Ag#o)o,0/(Acto)n,o for various
ions are plotted as a function of the inverse of the crystallographic
ionic radius. The viscosity (1) values of normal water (H,0) and
heavy water (D,0) used in this calculation are 0.8904 and 1.0970 cP,
respectively [CRC Handbook of Chemistry and Physics 5Tth
ed.; Weast, Ed.; CRC Press: Boca Raton, FL, 1976].

reflect the whole picture because the ratio (Ao#o)p,0/
(Aono)n,0 Varies systematically from unity when plotted as
a function of the inverse of the crystallographic ionic
radius. The molecular theory can capture this aspect as
shown in Figure 5. This indicates the probable participa-
tion of the solvent dynamics in determining the A,.
Theoretical studies™ on solvation dynamics in D,O have
shown that while the initial ultrafast response remains
unchanged both in amplitude and in time constant
compared to those in normal water (H,0), the long time
part is slowed by about 20%. However, the effects of the
deuteration on ionic mobility are rather small, the maxi-
mum being only about 3. It does not affect the ultrafast
inertial part of the force correlation function but only the
slow, diffusive part whose contribution to the whole is
small.

lonic Mobility in Alcohols. lonic mobility of rigid
cations has been studied extensively in the lower members
of monohydroxy straight-chain alcohol series.’* Here the
mobility is lower than that for water and decreases
systematically as one studies the higher alcohols. One of
the unique problems here has been the rather large value
of Ag for small ions like Lit or Na*. In particular, the
reduction in A, after the maximum is rather small in
ethanol which is different from that in methanol. Another
problem of interest is the validity of the solvent-berg
model which has been proposed for alcohols.

Recent experimental results on solvation dynamics in
alcohols have revealed rather diverging results. Except for
methanol, Horng et al.*® found no evidence of an ultrafast
component in polar solvation dynamics. Joo et al.,*c on
the other hand, observed a near universal ultrafast com-
ponent in all the monohydroxy alcohols, of the time
constant 60—70 fs. The amplitude of this component was
found to decrease with increasing chain length. It has
been argued recently® that the ultrafast component in
higher alcohols is due to nonpolar solvation and, there-
fore, should have no effect on ionic mobility.3!
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FIGURE 6. The values of the Walden product (Agno) of rigid,
monopositive ions plotted as a function of the inverse ionic radius
in ethanol at 298 K. The solid line represents the theoretical
predictions, and the filled circles denote the experimental results.

The nonmonotonic size dependence of ionic mobilities
in methanol is already shown in Figure 3. In Figure 6,
the theoretical ionic mobilities at room temperature are
shown for ethanol. The experimental results!* are also
presented in the same figure. Here again the agreement
between the molecular theory?*~2” and the experiment is
excellent.

lonic Mobility in Acetonitrile and Formamide. Among
other solvents, ionic mobility has been investigated ex-
tensively for acetonitrile and formamide. Acetonitrile is
known to exhibit ultrafast solvation dynamics, with an
inertial component of about 70 fs. Studies by Horng et
al.*d have shown that formamide also exhibits a fast
component of 100 fs, with a smaller amplitude. Note that
these two solvents have completely different molecular
arrangements. While acetonitrile rotates almost freely,
because of its nearly spherical shape, formamide is
strongly hydrogen-bonded and is known to exist in a two-
dimensional sheetlike structure in the liquid state. In both
these solvents the theoretical predictions®?7 are found to
be in good agreement with the experimental results.}4~%
This clearly indicates that the dynamics of the solvent
plays the dominant role in determining the ionic mobili-
ties in these complex systems.

Relative Contribution of Rotational and Translational
Solvent Modes. A question of fundamental impor-
tance?°~2123-27 in the microscopic description of ionic
mobility is the relative role of rotational and translational
motions of the solvent molecules. Theoretical studies®?
have shown that the translational modes are indeed
effective in reducing the magnitude of dipolar dielectric
friction in slow solvents. In solvents which exhibit ul-
trafast solvation dynamics (for example, water, acetoni-
trile, and methanol), the effects of translational modes are
found to be unimportant. This is because the ultrafast
polar solvation originates from the long-wavelength po-
larization modes (or bulk response) which make the
contribution of the solvent translational modes negligible.
For slow liquids (ethanol, propanol, butanol), however,
the situation is different. Here the relative contribution
between the rotational and the translational modes can
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The calculational procedure is described in detail in ref 25.

r~1

even determine the validity of the solvent-berg model.
This interesting aspect is further discussed below.
Solvent-Berg versus Dielectric Friction: Quantifica-
tion of the Franck—Wen Model. It was Franck and Wen3*
who suggested that there could be a virtually immobile
solvent layer around the ion while the natural dynamics
of the pure solvent can prevail at a larger distance. The
Franck—Wen model®* provides the textbook explanation
of the breakdown of Walden’s rule in terms of the
formation of a solvent-berg around the ion. On the other
hand, the dielectric friction model largely ignores this
solvent-berg picture. However, it is clear that, for a small
ion in a slow solvent (characterized by large 7,), the
solvent-berg model should be valid. Recently,?26 it has
been shown how the solvent-berg model can be recovered
from the present microscopic theory, and the following
physical picture has emerged. The solvent molecules
close to the ion experience a strong electric field from the
ion. The decay of this force depends on the mobility of
the ion itself and on the motion of the solvent molecules.
When the rotational and the translational motions of the
solvent molecule in question are slow, then two things
could occur synergistically. First, the dielectric friction on
the ion increases which slows the ion. This, in turn,
increases the friction on the solvent molecule. This is a
back-reaction. As the solvent motion itself is slow, this
effect gets magnified. This is described in Figure 7, where
the reduction in the value of the self-diffusion coefficient
of the nearest-neighbor solvent molecules is depicted as a
function of inverse ion size. When the size of the ion is
small, the reduction is large, implying that solvent mol-
ecules next to the ion can be essentially immobile.

Concentration Dependence of lonic Mobility:
Relaxation of the lon Atmosphere

The concentration dependence of ionic mobility in strong
electrolyte solution exhibits a very rich and complex
behavior. The solvent-mediated ion—ion and the ion—
solvent Coulombic interactions in concentrated solution

186 ACCOUNTS OF CHEMICAL RESEARCH | VOL. 31, NO. 4, 1998

profoundly affect the electrical conductivity of the me-
dium. The square root of concentration (+/c) dependence
of ionic mobility predicted by the Debye—Huckel—On-
sager (DHO) theory has only limited validity (valid for c
< 1072 mol/L). For moderately concentrated solution (c
< 1 mol/L), an empirical fit, known as the Shedlovsky
equation,®® was proposed to analyze the conductivity. In
addition to the usual +/c term in DHO theory, this
equation contains logarithmic and quadratic concentra-
tion (c?) dependence. However, the origin of these higher
order terms has not yet been fully understood. A micro-
scopic theory which includes the dynamics of the solution
and retains the molecularity of the system would be of
great help in understanding the molecular origin of the
diverse concentration dependence of ionic conductivity
in electrolyte solution.

Preliminary investigations?” have shown that the rela-
tive contributions from the rotational and the translational
modes can have important consequences in the relaxation
of the ion atmosphere in an electrolyte solution. This is
an aspect which has not been addressed at all in the
Debye—Huckel—Onsager theory of ionic conductivity. Of
course, this effect will be important only at moderate to
large concentration. The resulting molecular theory has
a structure similar to that (eq 5) discussed here.

Computer Simulation Studies

Recently Lee and Rasaiah®®> have reported detailed com-
puter simulation studies of ionic conductivity of small
cations and anions in water. The ion—water intermo-
lecular potentials were obtained by fitting them to the
solvation energies of small ion—water clusters. Very good
agreement was obtained between simulations and experi-
mental results. These authors also carried out an analysis
of the residence times of the nearest-neighbor solvent
molecules of the ions. On the basis of these residence
times, it was surmised that while a solvent-berg model
may be appropriate for Lit, Na*, and F~ ions in water,
the dielectric friction model is more appropriate for other
ions.

Computer simulation studies have also clarified the
origin of the observed difference in the limiting ionic
conductivities of the negative ions from those of the
positive ones of the same size. The limiting ionic con-
ductance of halide ions in water, when plotted as a
function of the inverse of the crystallographic radius,
constitutes a curve which is different from that of the
alkali-metal ions.** This has been explained by Lee and
Rasaiah® who have shown that this difference could arise
from a lack of symmetry between the cation—water and
anion—water interactions. The effects of such short-range
interactions are yet to be included in a molecular descrip-
tion. Clearly, one requires a microscopic treatment of the
bare friction (Cpare Of €q 3).

Concluding Remarks

It is evident from this Account that considerable progress
has been made in recent years in understanding the ion
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size and the solvent dependence of ionic mobility. The
role of the newly discovered ultrafast polar solvation in
enhancing the ionic mobility of small cations is fascinat-
ing. It is indeed amusing that such an ultrafast process
can profoundly influence the ion diffusion which is
inherently a slow phenomenon! Thus, a process which
occurs on the time scale of few tens of femtoseconds
seems to influence a process taking place on a few tens
of picoseconds! The dramatic reduction in the value of
the friction on the ion comes from the much enhanced
rate of decay of the force correlation function because of
the ultrafast component.

There are many problems in this field that remain to
be understood. No microscopic understanding of the
concentration dependence of the ionic conductivity at
intermediate to high concentration has yet evolved. The
conductivity of binary mixtures (for example, water and
tert-butyl alcohol)®® exhibits an exotic composition de-
pendence which cannot be understood in terms of the
continuum models. With the availability of new nonlinear
optical techniques, a much better understanding of the
details of solvent dynamical response is beginning to
emerge. This, in turn, can help in understanding the ionic
mobility in many solvents. We can thus look forward to
an exciting future of these and related problems of
classical physical chemistry, which is currently undergoing
a rejuvenation.

We thank Dr. Srabani Roy for her contribution in the initial
part of this work. We thank Professor Graham Fleming for
discussions and continued encouragement and Professor Kankan
Bhattacharyya for a critical reading of the manuscript. The
financial support from the Council of Scientific and Industrial
Research (CSIR), India, and the Department of Science and
Technology (DST), India, is gratefully acknowledged. R.B. thanks
CSIR for a research fellowship.

References

(1) Ostwald, W. Z. Phys. Chem. 1888, 2, 270—283.

(2) Glasstone, S. An Introduction to Electrochemistry;
Litton Education Publishing: New York, 1942. At-
kins, P. W. Physical Chemistry, 5th ed.; Oxford
University Press: Oxford, 1994; Part Ill, Chapter 24.
Castellan, G. W. Physical Chemistry, 3rd ed.;
Addison-Wesley: Reading, MA, 1971; Chapter 31.

(3) Born, M. Z. Phys. 1920, 1, 221—249.

(4) (@) Jimenez, R.; Fleming, G. R.; Kumar, P. V.
Maroncelli, M. Nature 1994, 369, 471-473. (b)
Rosenthal, S. J.; Xie, X., Du, M.; Fleming, G. R. J.
Chem. Phys. 1991, 95, 4715—4718. (c) Joo, T.; Jia,
Y.; Yu, J-Y.; Lang, M. J.; Fleming, G. R. J. Phys. Chem.
1996, 104, 6089—6108. (d) Horng, M. L.; Gardecki,
J. A.; Papazyan, A.; and Maroncelli, M. J. Phys. Chem.
1995, 99, 17311—-17337.

(5) (a) Maroncelli, M.; Fleming, G. J. Chem. Phys. 1988,
89, 5044—5069. (b) Maroncelli, M. J. Chem. Phys.
1991, 94, 2084—2103. (c) Maroncelli, M. J. Mol. Liq.
1993, 57, 1—41.

(6) Barbara, P. F.; Jarzeba, W. Adv. Photochem. 1990,
15, 1-68. Bagchi, B. Annu. Rev. Phys. Chem. 1989,
40, 115—-140.

(7) (@) Roy, S.; Bagchi, B. J. Chem. Phys. 1994, 101,
4150—-4155. (b) Roy, S.; Komath, S.; Bagchi, B. J.
Chem. Phys. 1993, 99, 3139-3142. (c¢) Roy, S;
Bagchi, B. J. Chem. Phys. 1993, 99, 9938—9943. (d)
Nandi, N.; Roy, S.; and Bagchi, B. J. Chem. Phys.
1995, 102, 1390—1397.

(8) Raineri, F. O.; Zhou, Y.; Friedman, H. L. Chem. Phys.
1991, 152, 201—220. Raineri, F. O.; Resat, H.; Perng,
B; C.; Hirata, F.; Friedman, H. L. J. Chem. Phys. 1994,
100, 1477—1491.

(9) Biswas, R.; Nandi, N.; Bagchi, B. J. Phys. Chem. 1997,
101, 2968—2979.

(10) Sjogren, L.; Sjolander, A.J. Phys. C: Solid State Phys.
1979, 12, 4369—4392.

(11) Bhattacharyya, S.; Bagchi, B. J. Chem. Phys. 1997,
106, 1757—1763; J. Chem. Phys., in press.

(12) Debye, P.; Huckel, E. Phys. Z. 1923, 24, 185—206.

(13) Onsager, L. Phys. Z. 1926, 27, 388—392.

(14) Kay, R. L.; Evans, D. F. J. Phys. Chem. 1966, 70,
2325—2335. Ueno, M.; Tsuchihashi, N.; Yoshida, K.;
Ibuki, K. J. Chem. Phys. 1996, 105, 3662—3670.

(15) Thomas, J.; Evans, D. F. J. Phys. Chem. 1970, 74,
3812—38109.

(16) Fuoss, R. M. Proc. Natl. Acad. Sci. U.S.A. 1959, 45,
807—813.

(17) Boyd, R. H. J. Chem. Phys. 1961, 35, 1281—1283.

(18) Zwanzig, R. J. Chem. Phys. 1963, 38, 1603—1605;
1970, 52, 3625—3628.

(19) Hubbard, J. B.; Onsager, L. J. Chem. Phys. 1977, 67,
4850—4857.

(20) Wolynes, P. G. Annu. Rev. Phys. Chem. 1980, 31,
345—-376.

(21) Wolynes, P. G. J. Chem. Phys. 1978, 68, 473—483.
Colonomos P.; Wolynes, P. G. J. Chem. Phys. 1979,
71, 2644—2651.

(22) Kirkwood, J. G. J. Chem. Phys. 1946, 14, 180—201.

(23) Bagchi, B. J. Chem. Phys. 1991, 95, 467—478.

(24) Biswas, R.; Roy, S.; Bagchi, B. Phys. Rev. Lett. 1995,
75, 1098—1101.

(25) Biswas, R.; Bagchi, B. J. Chem. Phys. 1997, 106,
5587—5598.

(26) Biswas, R.; Bagchi, B. J. Am. Chem. Soc. 1997, 119,
5946—5952.

(27) Biswas, R.; Bagchi, B. Manuscript under preparation.

(28) (a) van der Zwan, G.; Hynes, J. T. J. Chem. Phys.
1982, 76, 2993—3001; Chem. Phys. Lett. 1983, 101,
367—371. (b) Klippenstein, S.; Hynes, J. T. J. Phys.
Chem. 1991, 95, 4651—4662.

(29) Chan, D.Y.C.; Mitchel, D. J.; Ninham, B. W. J. Chem.
Phys. 1979, 70, 2946.

(30) Hsu, C. P.; Song, X.; Marcus, R. A. J. Phys. Chem. B
1997, 101, 2546—2551.

(31) Bagchij B. J. Chem. Phys. 1994, 100, 6658—6664.
Biswas, R.; Bhattacharyya, S.; Bagchi, B. J. Chem.
Phys., submitted for publication.

(32) Chandra, A; Bagchi, B. J. Chem. Phys. 1989, 90,
7338—7345. Bagchi, B.; Chandra, A. Adv. Chem.
Phys. 1991, 80, 1—-126.

(33) Frank, H. S.; Wen, W. Y. Discuss. Faraday Soc. 1957,
24, 133—140.

(34) Shedlovsky, T. J. Am. Chem. Soc. 1932, 54, 1405—
1428. Onsager, L.; Fuoss, M. J. Phys. Chem. 1932,
36, 2689—2778.

(35) Lee S. H.; Rasaiah, J. C. J. Chem. Phys. 1994, 101,
6964—6974; 1996, 100, 1420—1425.

(36) Broadwater, T. L.; Kay, R. L. J. Phys. Chem. 1970,
74, 3802—3812.

AR970226F

VOL. 31, NO. 4, 1998 / ACCOUNTS OF CHEMICAL RESEARCH 187



